Group 3: East Plum Creek at Lowell Ranch – 2023

Aeryn Aurand, JD Carson, Alex Chavez, Hannah Fristed, Emma Haskell, Katie Wilson

Figure 1. Site of interests with total Coliform concentrations at East Plum Creek: Lowell Ranch.

Table 1. Site information for East Plum Creek at Lowell Ranch

Site ID	Latitude	Longitude	Site Description
EPC10	39.316°	104.879°	East Plum Creek at Bell Mountain Parkway
LR1	39.327°	104.877°	East Plum Creek at Lowell Ranch (CALF H.Q.)
LR2	39.323°	104.879°	East Plum Creek at Lowell Ranch (Cow Pasture)
LR4	39.319°	104.880°	East Plum Creek at Lowell Ranch (Culvert Failure)
EPC9	39.339°	104.871°	East Plum Creek Gulch at Crystal Valley Parkway

Main Findings

- Data shows TN accumulated downstream surpassing proposed CDPHE limits at EPC9, while TP decreased downstream in compliance.
- Soil leachate samples were taken at LR4 from the stream bank at the beaver dam, and at the beaver pond which exhibited elevated levels for TP, NO₃-, and Se.
- Notable erosion was present along the reach of EPC, recent precipitation events heavily impacted initial reclamation attempts at LR2 and a culvert failure at LR4 led to a roadway being washed out.
- Stream connectivity fluctuates with flow rates and is affected by sediment islands, causing non-traversable conditions for aquatic life.
- LR4's beaver pond and dam, in addition to the culvert failure, suspected to cause a surge in total coliform concentrations from LR4 to LR1.
- The culvert failure requires reclamation, with provided recommendations of overall structural changes or culvert redesign.

Table 2. Measured water quality parameters and flow rates

Date	Site ID	рН*	Conduct- ivity (μS/cm)	Temp** (°C)	Dissolved Oxygen ▲ (mg/L)	Alkalinity (mg CaCO₃/L)	Turbidity (NTU)	Flow Rate* (cfs)
5/16/2023	EPC10	7.53	160	18.2	7.8	18	70.5	N/M
5/16/2023	LR4	7.38	193	12.7	8.0	26	131	N/M
5/16/2023	LR2	7.42	204	13.8	7.6	26	189	75.5
5/16/2023	LR1	7.39	211	11.1	7.9	31	744	N/M
5/16/2023	EPC9	7.42	176	18.4	7.4	29	168	N/M

N/M = Not Measured; *Standard limit 6.5 to 9 [4]; **Daily Max 24.3°C; $^{\blacktriangle}$ Standard min limit 20 mg CaCO₃/L [1]. *Flow rate measured on May 19th, 2023.

Table 3. Metals, anions, solids, organics, nutrients, and pathogens

2023		Concentrations													
Group 3 – East Plum Creek at Lowell Ranch			Metals (mg/L)					Anions (mg/L)		Solids Organics (mg/L) (mg/L)		Nutrients (mg/L)		Pathogens (mpn/100 mL)	
East Flum Creek at Lowell Ranch		As	Fe	Mn	Se	ΤI	NO2 ⁻ -	NO₃⁻ - N	TSS	тос	TP	TN	Coliform	E. coli	
	Aquatic Life Ch	Aquatic Life Chronic [1]		1.0	-	-	1	1	-	-	-	-	-	-	-
ЕРА	Aquatic Life Ad	cute [1]	0.34	-	-	-	1	1	-	-	1	-	-	-	-
	Human Recrea	ntion [2]	1.8E-05	-	0.05	0.17	2.4E-04	-	10	-	-	-	-	-	-
	Drinking Wate	r [3]	0.01	-	-	0.05	0.002	1	10	-	-	-	-	-	-
	Secondary Drinking Water [3]		-	0.3	0.05	-	-	-	-	-	-	-	-	-	-
CDPHE	Regulation 38 Chronic [4]		2.0E-05*	1.0*	1.7**	0.0046	1	0.05	-	-	-	0.11	0.53*	-	126
	Regulation 38 Acute [4]		0.34	-	3.1**	0.0184	1	1	10	-	-	-	-	-	-
USDA	USDA Livestock [5]		0.01	0.3	0.05	0.05	-	10	30	-	-	-	-	200	-
	Detection Limit (mg/L)		0.0168	0.0003	0.0001	0.0109	0.0049	0.1	0.1	-	0.17	0.029	0.17	1	1
Sample	Site ID	Date	As	Fe	Mn	Se	ΤI	NO ₂	NO ₃	TSS	TOC	TP	TN	Coliform	E. coli
Water	EPC10	5/16/2023	BDL	1.31	0.060	BDL	BDL	ND	0.10	108	9.05	BDL	0.35	850	75
	LR4	5/16/2023	BDL	1.68	0.068	BDL	BDL	BDL	0.08	134	8.98	BDL	0.37	1100	31
	LR2	5/16/2023	BDL	2.41	0.091	BDL	BDL	BDL	0.10	248	8.96	BDL	0.37	2100	10
	LR1	5/16/2023	0.018	8.71	0.092	BDL	BDL	BDL	0.12	320	9.14	0.38	0.39	4600	20
	EPC9	5/16/2023	BDL	2.05	0.076	BDL	BDL	BDL	0.13	289	9.26	0.063	0.55	2000	110
Soil	LR4 - 1	5/16/2023	BDL	0.165	0.006	0.007	BDL	BDL	0.55	N/M	N/M	0.10	N/M	N/M	N/M
	LR4 - 2	5/16/2023	BDL	1.61	0.039	0.006	0.013	BDL	2.6	N/M	N/M	0.34	N/M	N/M	N/M

Notes:

A/BDL = Above/Below Detection Limit

N/M = Not Measured

For information on other constituents, please see Data Appendix

[1] US EPA National Recommended Water Quality Criteria - Aquatic Life Criteria Table; freshwater standards (https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table)

- $\label{lem:commended} \begin{tabular}{ll} [2] US EPA National Recommended Water Quality Criteria Human Health Criteria Table; consumption of water \& organisms (https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table) \\ \end{tabular}$
- [3] US EPA Drinking Water (https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations)
- [4] CDPHE Regulation 38 for Upper South Platte River Basin (https://cdphe.colorado.gov/water-quality-control-commission-regulations)
- [5] USDA Livestock Drinking Water (https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_051302.pdf)
- [6] Chatfield Reservoir Storage Reallocation Feasibility Study 2013

<u>Reclamation Recommendations – Culvert Failure</u>

- Close the road and remove culvert from LR4 stream.
- Research more strategies to discourage beaver activity in the area such as wider spillways.
- Add a bridge pier to control flow, preserve road crossing, reduce erosion, and maintain stream connectivity.

Recommendations – Water Quality

- Add vegetation as a filter for constituents from runoff such as coliform and E. coli.
- Add structural improvements to the bank along East Plum Creek to prevent erosion using vegetation or riprap.
- Return to all sites and perform ecological risk assessment to further monitor constituents of concern.

^{*}Total Recoverable Standards (all other standards are for dissolved metals)

^{**}Calculated using Table Value Standards assuming 111 mg CaCO₃/L average low flow hardness [6]

 $^{^{}f A}$ Phosphorus standard is 0.03 mg/L within Chatfield Reservoir and 0.11 mg/L for most tributaries

^{*}Average of Regulation 38 proposed standards for cold and warm waters **Bolded values** represent total samples.