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Creating a Concentration Translator to Link Chlorophyll and Phosphorus 

 

The central tenet behind development of nutrient criteria is that enriching the supply of 

nutrients to aquatic systems leads to an over-abundance of algae, which can result in 

impairment of uses.  Setting a standard for algal abundance therefore becomes a focal 

point for nutrient criteria development because it establishes the potential for impairment 

of uses.  Chlorophyll concentration is a widely-used surrogate for the abundance of algae, 

and it is the parameter used as the water quality standard.  From a regulatory perspective, 

however, setting standards for chlorophyll is only part of the task. 

 

In the parlance of nutrient criteria, chlorophyll is a “response variable.”  The abundance 

of algae reflects the net effect over time of the various growth and loss processes 

operating on the algal species resident in a lake.  For practical purposes, the response 

(i.e., the growth of algae) occurs entirely within the lake; there are no significant 

watershed sources of chlorophyll. On the other hand, the causal variables (i.e., nutrients) 

come chiefly from the watershed.  In order to effect control of algal abundance in a lake, 

the supply of nutrients from the watershed must be managed.  Development of nutrient 

criteria therefore depends on targeting cause (nutrients) and response (algal abundance) 

in tandem. 

 

Linking causal and response variables in development of water quality criteria is not 

unprecedented.  In streams, for example, the concentration of dissolved oxygen reflects in 

part the effect of biochemical oxygen demand (BOD) contributed by external sources.  

Attaining the DO standard requires control of the BOD load to the stream, a linkage that 

has been understood for decades.  BOD is the causal variable and DO is the response 

variable.  Controlling BOD is necessary, but not always sufficient, for ensuring 

attainment of the DO standard. 

 

Nutrient criteria are similar in the sense that managing the nutrient supply is necessary for 

controlling the abundance of algae.  The linkage between chlorophyll and nutrients must 

be quantified if there is to be a common understanding of the benefits (in terms of 

reduced algal abundance) that can be expected from the cost of implementing a reduction 

in the nutrient supply.  Any quantitative linkage between chlorophyll and nutrients will 

be referred to as a “concentration translator.” 

 

Defining the linkage between chlorophyll and nutrients has been the object of many basic 

and applied research studies, and some very sophisticated mechanistic models have been 

developed for the purpose of explaining variability in algal abundance.  While these 

models may provide well-deserved satisfaction from a scientific perspective, they may 

not be practical or necessary from a regulatory perspective. 

 

A model capable of explaining all temporal variation in algal abundance is not necessary 

for regulatory purposes where the focus is on attainment, based on frequency of 

exceedance.  Predicting how often the chlorophyll standard might be exceeded is a 

simpler task that places emphasis on locating an upper bound for algal abundance in a 
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lake with a particular nutrient concentration.  In other words, presence of unexplained 

variability can be acknowledged without attempting to quantify the sources. 

 

The premise for linking chlorophyll and nutrients in criteria development is that the 

nutrient supply sets an upper bound on algal abundance, and that upper bound is affected 

by physical factors (chiefly light and temperature) prevailing in a particular lake.  Other 

factors such as grazing by herbivores may depress algal abundance below the upper 

bound, but there are no factors other than nutrients that can augment algal abundance 

beyond this upper bound.  Creating the quantitative linkage defining the upper bound for 

chlorophyll in terms of nutrient concentration is the task of a concentration translator. 

 

Before describing a concentration translator for Colorado, it is necessary to develop 

several supporting concepts and arguments, beginning with a review of the limiting 

nutrient concept and a rationale for targeting phosphorus.  Next is a characterization of 

the factors that can suppress algal abundance below the upper bound expected on the 

basis of physical factors and nutrient concentrations.  A candidate concentration 

translator, the response ratio, is defined as it relates to expectations for algal abundance, 

and it is examined in terms of its capacity to reflect the operation of factors that may 

suppress algal abundance.  Finally, data are presented from Colorado lakes and a sample 

application of the response ratio is given. 

 

Limiting Nutrient Concept 

Algae require nutrients to grow.  Increasing the supply of nutrients can increase algal 

growth in the same way that fertilizer increases the growth of crops in a field.  Although 

many nutrients are required for growth, the limit on growth that is reached at one point in 

time is determined by just one nutrient, as stated in Liebig’s Law of the Minimum: 

 

“Under conditions of equal temperature and light, the nutrient available 

in the smallest quantity relative to the requirement of the plant will limit 

productivity.” 

 

There are two qualifiers, one explicit and one implicit, in Liebig’s Law, and both have 

contributed to misconceptions about expectations for algal abundance in lakes.  Light and 

temperature are subject to significant temporal and spatial variation, which is contrary to 

the explicit qualifier in Liebig’s Law (“Under conditions of equal temperature and 

light….”).  Temperature in the mixed layer of a lake varies seasonally, and light varies 

both seasonally and with depth.  Furthermore, temperature and light regimes differ 

among lakes.  In practical terms, when algae do not experience steady-state growth 

conditions, it weakens expectations for a strong relationship between chlorophyll and 

nutrients.  For example, there may be a time lag between a change in the conditions of 

temperature or light and the response of the algae as measured by chlorophyll 

concentration. 

 

The implicit qualifier is that the law applies, strictly speaking, to one species at a time.  

Natural communities are composed of many algal species, each of which has slightly 

different nutrient requirements and different growth responses to light and temperature.  
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Moreover, the species composition can change dramatically over the course of the 

summer.  The result is that the amount of chlorophyll produced in response to a given 

supply of nutrients will vary depending on light, temperature, and the species present, all 

of which change throughout the growing season.  The point is that the potential 

abundance (i.e., upper bound for chlorophyll) is subject to change throughout the year. 

 

Reasons to Focus on Phosphorus 

It has been common practice, based on an extensive scientific literature, to assume that 

phosphorus is the nutrient most likely to be effective in controlling algal abundance in 

lakes.  There are many studies showing a strong statistical linkage between chlorophyll 

and phosphorus.  In addition, a recent review of lake restoration efforts (Jeppesen et al. 

2005) found that a reduction in total phosphorus loads led to a reduction in chlorophyll in 

most lakes.  This is not the same things as saying that phosphorus is always the limiting 

nutrient in a strict sense, but it is encouraging to note the concordance. 

 

There are practical advantages to placing the primary focus on phosphorus rather than 

nitrogen, which is the only other nutrient with a strong claim for controlling algal 

abundance.  Control of phosphorus sources in the watershed can reduce loads in a 

predictable manner.  Similar controls on nitrogen can be circumvented by algae able to 

fix atmospheric nitrogen, which is essentially inexhaustible. 

 

In general, there appears to be no special disadvantage incurred by ignoring nitrogen.  

Prairie et al. (1989) found that the correlation between chlorophyll and total nitrogen is 

about the same as that between chlorophyll and total phosphorus for a wide range of 

nitrogen to phosphorus ratios (low values of the ratio are often taken as indirect evidence 

for nitrogen limitation).  Nitrogen could, of course, be used on a site-specific basis if 

some special regulatory advantage were conferred, but in general phosphorus alone 

appears to be as good or better than nitrogen.  It is also worth noting that the occurrence 

of nitrogen limitation may often simply be the consequence of pre-existing over-

enrichment with phosphorus (cf. Golterman 1975). 

 

Phosphorus also offers some practical benefits with respect to implementation of 

controls, and it has no particular disadvantages with respect to nitrogen.  Golterman’s 

(1975) observation made more than 30 years ago remains relevant today: 

“It is not important whether [phosphorus] is currently the limiting factor or not, 

or even that it has ever been so; it is the only essential element that can easily be 

made to limit algal growth.” 

 

Expectations for Algal Abundance 

The upper bound on expectations for chlorophyll in a particular lake will be referred to as 

potential abundance in this document.  For the purpose of discussion, potential 

abundance is defined as the steady-state amount of chlorophyll expected with the 

observed nutrient concentrations, under the ambient light and temperature regime. 

 

The supply of nutrients creates a potential for growth of the algal species present in the 

community, but it is a moving target insofar as steady-state conditions do not prevail.  
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Furthermore, the potential may not be realized if abundance is suppressed by other 

factors.  For example, if grazers are abundant, they may be able to consume algae faster 

than the algae can reproduce.  Changes in any of these or other factors can occur on a 

scale of days within a lake and the relative importance of factors will vary among lakes. 

 

The chlorophyll that is measured in a lake is referred to as realized abundance and it 

usually reflects the effect of one or more factors in suppressing abundance below the 

potential abundance.  The degree of suppression varies, but must occasionally be small 

enough so that the realized abundance approximates the potential.  The objective is not to 

quantify the amount or source of suppression, but to accommodate variability observed in 

chlorophyll measurements. 

 

Characterizing Chlorophyll-Phosphorus Relationships with Concentration 

Translators 

The scientific literature is replete with studies exploring relationships between 

phosphorus and algal abundance in a wide variety of lakes.  Typically, these studies 

produce empirical relationships (regression lines) that predict chlorophyll as a function of 

phosphorus.  These quantitative relationships are examples of concentration translators as 

defined for this document.  One widely cited equation, derived by Jones and Bachmann 

(1976), has been applied in the development of control regulations in Colorado.  Many 

such empirical relationships exist, and a few examples highlighting regional variations 

are shown in Figure 1. 
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Figure 1.  A selection of equations predicting chlorophyll as a function of phosphorus.  Sources 

include Jones and Bachman (1976), Dillon and Rigler (1974), Hoyer and Jones (1983), and Brown et 

al. (2000). 
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Factors that Suppress Algal Abundance 

Light and temperature affect the potential abundance of algae for a given level of 

phosphorus.  An example for the role of light is provided by the work of Hoyer and Jones 

(1983), who have shown the importance of accounting for inorganic suspended solids 

(ISS), which increase turbidity and decrease the availability of light.  Not surprisingly, 

higher concentrations of ISS decrease the yield of chlorophyll per unit total phosphorus 

(Figure 2).  Other things being equal, manipulating the availability of light affects the 

potential abundance of algae across the spectrum of phosphorus concentrations. 
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Figure 2.  Predictions of chlorophyll as a function of phosphorus, at three levels of inorganic 

suspended solids (ISS).  Higher ISS means less light available for algae.  Equation from Hoyer and 

Jones (1983). 

 

The potential abundance may not be realized at any point in time due to suppression by 

grazers that feed on algae.  When large grazers (chiefly zooplankton species such as 

Daphnia) are abundant, their feeding can remove a significant portion of algal biomass.  

Mazumder and Havens (1998) captured this effect by contrasting the chlorophyll-

phosphorus relationships derived when the zooplankton community is dominated by large 

or by small species (Figure 3).  In general, only the large species have the capacity to 

consume a significant portion of the algal biomass, and thus to depress realized 

abundance below the potential expected for a given phosphorus concentration. 
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Figure 3.  Predictions of chlorophyll as a function of phosphorus, in the presence of large or small 

zooplankton species.  The zooplankton are herbivores that consume algae.  Equation from 

Mazumder and Havens (1998). 

 

The abundance of algae also may be affected by the availability of nitrogen, which may 

supplant phosphorus as the limiting nutrient.  Nitrogen limitation is known to occur 

seasonally in some Colorado lakes (Morris and Lewis 1988), although it is unlikely to be 

limiting at all times in any lake.  Even in Cherry Creek Reservoir, where nitrogen 

limitation probably applies for most of the summer months, disruption of the intermittent 

stratification may relieve nitrogen limitation, albeit briefly, returning control to 

phosphorus.  It is not uncommon for predictions of chlorophyll to be improved by 

including both phosphorus and nitrogen as independent variables (e.g., Brown et al. 2000, 

Smith 1982).  What has been surprising about investigations of nitrogen-limited lakes is 

that nitrogen alone has not emerged as a stronger predictor of chlorophyll. 

 

A conventional, but indirect, indicator of nitrogen limitation is the ratio of total nitrogen 

to total phosphorus (TN:TP).  Prairie et al. (1989) show that the TN:TP ratio affects the 

abundance of chlorophyll expected on the basis of the phosphorus concentration (Figure 

4).  Thus, for a given concentration of phosphorus, expected chlorophyll concentrations 

tend to be smaller as the TN:TP ratio decreases, although the effect is seen mainly at 

phosphorus concentrations above 30 ug/L (Figure 4).  They also found that for the full 

range of TN:TP values, from nitrogen limitation to phosphorus limitation, “TN and TP 

correlated equally well with chlorophyll….”  The TN:TP ratio varies within and among 

lakes, and that variability should influence the abundance of algae.  At a given 

phosphorus concentration, the potential abundance of algae is more likely to be achieved 

when the TN:TP ratio is high.  As the ratio decreases (i.e., the concentration of nitrogen is 

reduced relative to the amount of phosphorus), the realized abundance is suppressed 

relative to the potential. 
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Figure 4.  Predictions of chlorophyll as a function of phosphorus for different ratios of nitrogen to 

phosphorus.  A low ratio of TN:TP is often taken as an indicator if nitrogen limitation.  Equation 

from Prairie et al. (1989). 

 

Most studies linking chlorophyll to phosphorus and other independent variables have 

been based on data from large sets of lakes.  This is true of the relationships portrayed in 

Figures 1-4.  These “global” studies are often used to predict response in a single lake, 

but there are good reasons why individual lakes may not respond exactly as predicted 

(Smith and Shapiro 1981).  While it is certainly possible to improve predictions of 

chlorophyll by adding more independent variables, and by treating each lake individually, 

these steps may not be necessary when the primary objective is to forecast frequency of 

exceedances rather than an accurate estimate of a seasonal mean.  The concept advanced 

here is that decisions can be based on the responsiveness of algal abundance 

(chlorophyll) when scaled to phosphorus alone. 

 

The Response Ratio as a Tool for Defining Lake-Specific Potential Abundance 

When algae are grown in culture, the outcome tends to be very predictable.  In an 

environment of controlled light and temperature, the growth of the algae depends largely 

on the abundance of nutrients.  When all nutrients are abundant but one (phosphorus, for 

example), the abundance of algae in a closed culture can be controlled by manipulating 

the concentration of that one limiting nutrient (e.g., Golterman 1975).  The endpoint in 

terms of chlorophyll per unit phosphorus varies for physiological reasons among algal 

species and even within a species.  The ratio of chlorophyll to phosphorus may vary 

about an order of magnitude from the minimum cell quota to the full extent of “luxury 

consumption” (cf. Reynolds 2006).  Moreover, the ratio declines as the bioavailable 

phosphorus increases.  The ratio could be as high 6 when phosphorus concentrations are 

very low. 
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Another way to consider the expected ratio of chlorophyll to phosphorus is by reference 

to the chemical composition of phytoplankton.  According to the widely-cited Redfield 

ratio (C106H263O110N16P1), phosphorus constitutes about 2.4% (by weight) of the carbon 

content of algae.  Chlorophyll is often estimated to be about 2% of cellular carbon (e.g., 

Chapra 1997).  With these typical assumptions about composition of algal cells, the ratio 

of chlorophyll to phosphorus would be about 1:1. 

 

Theoretical ratios may be viewed as the asymptote of values expected in the field, but 

there is no guarantee that they would be realistic for most lakes.  Rather than setting 

expectations based on theoretical ratios, field data can be used to establish the potential 

abundance of algae (chlorophyll) for different amounts of phosphorus.  Hern et al. (1981) 

employed this concept to define a “response ratio” that was used for evaluation of lakes 

sampled in the National Eutrophication Survey of the 1970s. 

 

A ratio of 1:1 is consistent with the upper bound of most observations from lakes in the 

National Eutrophication Survey (Figure 5), although the average response ratio in the 

summer was considerably less: 0.29.  If nothing else were known, a ratio of 1:1 might be 

a good starting point for control measures, but it could be unnecessarily stringent for 

many lakes. 
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Figure 5.  Frequency histogram of response ratios recorded during the National Eutrophication 

Survey (Hern et al. 1981). 

 

In any large collection of chlorophyll measurements from a lake, the potential can be 

approximated with an operational definition based on some percentile selected from the 

distribution of realized abundances.  The response ratio observed on a particular date 

represents realized abundance that may be less than the potential expected for a particular 

amount of phosphorus.  The role of factors other than phosphorus determines suppression 

of the ratio below the potential.  For a cross section of lakes, typical ratios can be 
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extracted from published regression equations characterizing chlorophyll as a function of 

phosphorus. 

 

The effect of increasing ISS concentration is like a discount factor applied to the 

responsiveness of the algal community to the availability of phosphorus (Figure 6).  

Higher ISS means less chlorophyll per unit phosphorus.  Effective grazing also reduces 

the apparent yield of chlorophyll per unit phosphorus (Figure 7).  Presumably, the 

difference occurs because large herbivores are much more efficient grazers able to 

suppress the response ratio by removing evidence of algal growth.  Finally, the effect of 

altering the TN:TP ratio is, not surprisingly, to make chlorophyll more responsive to 

phosphorus at higher TN:TP ratios (Figure 8); the effect is inconsistent at low phosphorus 

concentrations, however. 
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Figure 6.  Response ratios implied by an equation that predicts chlorophyll as a function of 

phosphorus and inorganic suspended solids (from Hoyer and Jones 1983).  Each line represents 

predictions where inorganic suspended solids is held constant at 1, 10, or 25 mg/L.  Higher ISS means 

less light available for algae. 
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Figure 7.  Response ratios implied by a equations that predict chlorophyll as a function of 

phosphorus.  Each line represents predictions for lakes where the zooplankton community is 

comprised of small or large herbivores (from Mazumder and Havens 1998).  Larger herbivores have 

the capacity to remove a significant portion of algal biomass. 
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Figure 8.  Response ratios implied by an equation that predicts chlorophyll as a function of 

phosphorus and nitrogen.  Each line represents predictions for a fixed nitrogen concentration. 

 

In each case where phosphorus is supplemented with an additional control factor, more 

variance in chlorophyll concentration can be explained.  Each time another factor 

becomes important relative to phosphorus, the response ratio is depressed below the 

potential for a given lake.  This was evident for increasing suspended solids, increasing 

grazing pressure, and decreasing nitrogen-phosphorus ratios.  It is not difficult to imagine 

a sequence of events in a lake where variations in nitrogen concentrations, or the wax and 

wane of grazer populations, could alter the response of algal populations to phosphorus 
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concentration at any point in time.  It would be difficult to incorporate all relevant 

variables in a predictive equation, but it is relatively easy to capture the aggregate effect 

of all factors on algal abundance by means of the response ratio.  In the next section, real 

data are used to show how potential abundance can be defined in terms of the response 

ratio. 

 

Survey of Response Ratios in Colorado Lakes 

The response ratio offers an attractive basis for developing site-specific implementation 

procedures for chlorophyll standards.  Part of the attraction resides in the potential for 

developing regional approaches for defining the amount of phosphorus consistent with a 

particular chlorophyll standard.  Characteristics of the response ratio in a range of 

Colorado lakes can help establish the means of defining potential abundance. 

 

Chlorophyll and phosphorus have been sampled in many lakes throughout the state, but 

there relatively few lakes with many samples from the summer averaging period.  

Attention is restricted to lakes where at least 20 samples have been taken during the 

summer averaging period (Table 1).  A few lakes have been omitted where enough 

samples were taken, but most of the phosphorus concentrations were below detection 

limit (e.g., Granby, Carter, Shadow Mountain).  In these cases, the response ratio could 

not be determined reliably. 

 

 Response Ratio Percentile  Years Exceeding Percentile 

Lake 50th 75th 90th Years 

Sampled 

50
th

 75
th

 90th 

Arvada 0.304 0.403 0.498 9 6 3 1 

Aurora 0.219 0.260 0.309 9 4 1 0 

Barr 0.101 0.223 0.428 5 2 0 0 

Bear Creek* 0.285 0.555 1.041 11 8 2 0 

Boulder 0.275 0.346 0.441 12 5 4 1 

Boyd 0.234 0.325 0.548 8 4 2 1 

Chatfield 0.236 0.371 0.518 13 8 4 1 

Cherry Creek 0.239 0.305 0.364 10 5 1 0 

Dillon 0.682 0.857 1.097 22 11 3 0 

Green Mt 0.304 0.402 0.617 13 8 3 1 

Loveland 0.290 0.390 0.459 8 4 2 1 

Milton 0.049 0.144 0.303 5 2 1 0 

Quincy 0.316 0.411 0.532 8 3 1 1 

Seaman 0.341 0.569 1.043 7 5 2 0 

Standley 0.233 0.322 0.554 12 6 1 0 

Overall 0.275 0.371 0.518 152 81 30 7 

* - after 1995        
Table 1.  Characteristics of response ratios observed during the summer months (Jul-Sep) in 

Colorado lakes.  Ratios are shown for the 50
th

, 75
th

, and 90
th

 percentiles in each lake, as well as the 

median across all lakes.  The number of summer seasons sampled is indicated for each lake.  The 

final three columns indicate the number of years in which the observed summer median 

concentration of chlorophyll exceeds the concentration calculated from the observed summer median 



 

 12

phosphorus and a particular percentile of the response ratio.  Bear Creek Reservoir data prior to 

1996 were omitted due to presence of a clear trend in phosphorus concentrations. 

 

For each lake, at least 20 pairs of chlorophyll and phosphorus measurements were 

available from the summer months; all such pairs were used to calculate response ratios, 

provided that the component concentrations were above the detection limit.  It was 

assumed that the set of response ratios for one lake were representative of a single 

distribution, from which percentiles could be drawn.  The percentiles chosen for this 

study were the 50
th
 (median), 75

th
, and 90

th
 as shown in Table 1.  The median response 

ratio ranged from 0.049 in Milton Reservoir to 0.682 in Lake Dillon.  The typical 

(median) value from the set of lakes was 0.275, which is close to the average from the 

National Eutrophication Survey lakes.  A response ratio of 0.275 indicates that an 

increase of nearly 4 ug/L of phosphorus is needed to produce an increase of 1 ug/L in 

chlorophyll. 

 

In separate calculations, the median summer chlorophyll and phosphorus concentrations 

were determined for each year in the period of record for each lake.  The period of record 

included from 5 to 22 years for the lakes included in Table 1, yielding a total of 152 lake-

years for the next step in the analysis. 

 

An expected value for summer median chlorophyll in a lake can be derived from the 

summer median phosphorus and the response ratio distribution.  The expected value 

represents potential algal abundance defined empirically based on exceedance frequency.  

Data from Lake Loveland are used to illustrate the procedure (Figure 9).  Chlorophyll and 

phosphorus have been measured during the summer months in eight years, plotted 

individually on the graph.  The median response ratio (0.290), which was calculated from 

all summer observations, is applied to the observed summer median phosphorus 

concentrations to produce the lowest of three lines on the graph.  Four of the observed 

summer median chlorophyll concentrations exceed the line based on the median response 

ratio.  The same kind of line is generated with the 75
th

 percentile response ratio (0.390), 

and only two of the eight chlorophyll values lie above that line.  The third (uppermost) 

line is generated with the 90
th
 percentile response ratio (0.459), and only one chlorophyll 

value falls above the line. 
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Figure 9.  Plot of summer median chlorophyll vs. summer median total phosphorus in Lake 

Loveland.  The three lines represent chlorophyll expected based on the observed phosphorus and one 

of three percentiles from the distribution of response ratios. 

 

A sample size of eight is too small for estimating a general exceedance frequency, but 

Lake Loveland is just one of the lakes included in the analysis.  The sample size can be 

expanded greatly by aggregating information from the set of 15 lakes (Table 1).  When 

the 50
th

 percentile response ratio is used to generate expected chlorophyll, the expected is 

exceeded by the observed about half of the time (81/152 lake-years), which makes sense 

for the median.  When the 75
th

 percentile response ratio is used, the expected chlorophyll 

is exceeded by the observed much less frequently (30/152 lake-years), which can be 

interpreted as a once-in-five year exceedance frequency.  Finally, the expected 

chlorophyll generated with the 90
th
 percentile response ratio is exceeded rarely (7/152), 

for an exceedance frequency of approximately once-in-20 years. 

 

While it is easy to conceptualize the exceedance frequency associated with use of the 

median response ratio, the other two exceedance frequencies must be viewed as strictly 

empirical in origin.  One advantage of an empirical approach is that it avoids some of the 

statistical complications related to defining and generalizing about distributions.  For the 

purpose of discussion, an allowable exceedance frequency of once in five years seems 

reasonable for the chlorophyll standard. 

  

The response ratio provides the basis for linking phosphorus to chlorophyll in criteria 

development.  For lakes with sufficient data, the 75
th

 percentile response ratio from the 

set of all summer ratios is applied to the chlorophyll standard to generate the phosphorus 

concentration consistent with a once-in-five year exceedance frequency for the 
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chlorophyll standard (TP=chl/ratio).  It is likely that default values will be established for 

lakes of a particular region or basin, but more work is needed before those are proposed. 

 

Conclusions 

1) The linkage between chlorophyll and phosphorus is central to development of 

nutrient criteria for Colorado lakes. 

2) Conventional regression analysis does not yield a suitable basis for developing 

criteria because the objective of the analysis is wrong and the unexplained 

variance in chlorophyll is high. 

3) An alternative procedure is described using a response ratio 

(chlorophyll:phosphorus) to characterize potential abundance on a site-specific 

basis. 

4) Analysis of a set of Colorado lakes indicates that the 75
th

 percentile value for the 

response ratio is consistent with a once-in-five year exceedance frequency. 

5) Given a chlorophyll standard, the 75
th

 percentile value of the response ratio can be 

used to generate the corresponding concentration for total phosphorus. 
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