
Characterizing Chlorophyll Distributions in Colorado Lakes 

 

The variability of chlorophyll concentrations within and among lakes poses challenges 

for the establishment of chlorophyll standards and assessment of their attainment.  There 

is some apprehensiveness that patterns of variation are lake-specific to the extent that 

development of statewide standards may be impractical.  Moreover, the nature of 

distributions for individual lakes, especially if non-normal, has important implications for 

the way that standards should be defined.  These issues can be addressed by examining 

large sets of lakes and seeking statistical patterns. 

 

Chlorophyll has been measured in many lakes throughout the state, although most lakes 

have been sampled only a few times.  For the purpose of characterizing the statistical 

distributions of chlorophyll, some constraints are needed.  There must be at least 20 

observations (not necessarily from the same year) from the averaging period of interest – 

summer (Jul-Sep).  The required number of observations is largely arbitrary.  The 

averaging period represents the Division’s current preference based on precedence and 

the likelihood that those months will be equally weighted in most available data sets.  The 

second point is particularly relevant to averaging periods, like annual or stratification 

season, which probably do not have equal representation of all months. 

 

Twenty lakes met the screening criteria, and some of them had many more than the 

minimum number of observations (Table 1).  Based on previous examination of many 

data sets, it was expected that chlorophyll concentrations in most lakes would fit a 

lognormal
1
 distribution.  This assumption was tested by means of probability plots using 

Minitab statistical software.  The Anderson-Darling statistic is used to compare goodness 

of fit between normal and lognormal distributions (Table 1); smaller numbers mean a 

better fit. 

 

With the exception of Arvada Reservoir, the lognormal distribution fit the data better than 

the normal distribution; chlorophyll concentrations in Arvada Reservoir fit a normal 

distribution (Figure 1).  Goodness-of-fit values range from 0.4 to 1.3 for lakes other than 

Arvada Reservoir.  Green Mountain Reservoir (Figure 2) and Standley Lake (Figure 3) 

thus bracket the range of “fits” observed. 

 

Lake POR N 

A-D 

normal 

A-D 

lognormal Data Source 

Green Mountain 1984-2001 87 7.3 1.3 SWQC 

Dillon 1981-2005 142 3.7 0.9 SWQC 

Chatfield 1987-2005 109 7.7 0.4 Chatfield WA 

Cherry Creek 1997-2006 93 2.7 0.7 Cherry Creek BWQA 

Bear Creek 1991-2006 95 7.2 1.2 Bear Creek WA 

Boulder 1993-2006 41 1.1 0.8 Boulder 

Barr 2002-2006 29 2.1 0.8 MWRD 

                                                
1
 All references in this document to logs, log-tranforms, and lognormal assume the use of natural (base e) 

logarithms. 



Lake POR N 

A-D 

normal 

A-D 

lognormal Data Source 

Milton 2002-2006 30 3.3 1.1 MWRD 

Shadow Mountain 1989-2006 51 5.3 0.5 USGS/USBR 

Seaman 2000-2005 25 1.8 0.7 Greeley 

Boyd 1999-2005 20 2.5 1.0 Greeley 

Loveland 1999-2005 20 0.9 0.7 Greeley 

Arvada 1994-2006 73 0.9 2.7 Arvada 

Aurora 1997-2006 114 1.6 0.8 Aurora 

Quincy 1998-2006 96 2.3 0.7 Aurora 

Standley 1995-2006 83 2.9 0.4 Westminster 

Granby 1989-2006 42 2.4 0.8 USGS/USBR 

Wolford 1995-2005 23 2.2 0.8 USGS 

Horsetooth 2000-2006 26 1.0 0.8 USGS/USBR 

Carter 1989-2006 27 1.3 0.7 USGS 
Table 1.  Summary of data sets available for assessment of chlorophyll distributions.  Anderson-

Darling (A-D) goodness-of-fit values indicate fit to the normal and lognormal distributions; lower 

values mean better fit.  With the exception of Arvada Reservoir, the data conform better to 

lognormal than to a normal distribution.  

 

 

 

86420

99

95

90

80

70
60
50
40
30

20

10

 5

 1

Data

P
e
rc

e
n
t

 
Figure 1.  Probability plot of chlorophyll data from Arvada Reservoir. 
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Figure 2.  Probability plot of chlorophyll data from Green Mountain Reservoir. 

 

In general, the data support the assumption that a lognormal distribution is reasonable for 

chlorophyll values from individual lakes.  It is almost always a better choice than the 

normal distribution.  This becomes important when defining the basis for assessment.  

Parametric procedures, when applied appropriately, yield smaller confidence intervals 

than non-parametric procedures, and the log-normal procedures are better than normal 

procedures for asymmetrical distributions like chlorophyll. 

 

Knowing that chlorophyll concentrations in any lake are likely to conform to a lognormal 

distribution leads to predictions about statistical properties.  For example, it is generally 

true of variables with lognormal distributions that the variance increases in proportion to 

the mean (Sokal and Rohlf 1995).  Walker (1985) made use of this tendency to develop a 

statistical basis for chlorophyll standards in other regions.  The relationship is quite 

strong for Colorado lakes (Figure 4).  A power function based on the arithmetic mean
2
 

(average of untransformed chlorophyll data) explains nearly 95% of the variation in the 

standard deviation (calculated from untransformed data).  The strength of the relationship 

does much to enable a statewide approach to a chlorophyll standard. 

 

                                                
2
 Unless stated to the contrary, mean refers to the arithmetic mean, which is used interchangeably with 

average throughout this document. 
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Figure 3.  Probability plot of chlorophyll data from Standley Lake. 

 

The relationship between the standard deviation and the mean provides a powerful basis 

for generalizing about the variance associated with a standard of any magnitude in any 

lake.  For example, if the chlorophyll standard were set at 15 ug/L, the expected variance 

could be estimated with a high degree of certainty from the regression equation in Figure 

4.  Armed with mean and standard deviation, it is possible to estimate confidence 

intervals for the mean and prediction intervals for individual observations.  In other 

words, it becomes possible to develop a statistical rationale for assessing attainment of 

the standard for any given lake. 

 

A simple screening procedure that could be applied to any lake with a chlorophyll 

standard uses the statistical concept of a “prediction interval” (as explained in Helsel and 

Hirsch 2002).  Each new chlorophyll measurement is compared with the distribution 

associated with the standard to determine if it is likely that the new observation came 

from the same distribution underlying the standard or from a different distribution (i.e., 

one with a larger mean).  The prediction interval, which is computed from the distribution 

associated with the standard, defines the range of chlorophyll values expected for a 

certain percentage, let’s say 90%, of the existing distribution.  When dealing with a 

standard, it makes sense to state this definition such that 90% of the values lie below a 

particular concentration (i.e., a one-sided prediction limit).  A new measurement that 

exceeds this 90% threshold is unlikely to be a member of the distribution corresponding 

to the standard (there is still a 10% chance that it is from the same distribution); i.e., the 

chlorophyll standard in that lake is unlikely to be attained. 
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Figure 4.  Power function characterizing the relationship between the mean and the standard 

deviation of Jul-Sep chlorophyll concentrations (untransformed) measured in a set of Colorado lakes.  

 

The equation for the prediction interval uses the mean and the standard deviation of the 

log-transformed values, but the power function relationship between mean and standard 

deviation is based on untransformed data.  An algorithm is used to bridge the gap 

(Aitchison and Brown 1963, as shown in Walker 1985).  The standard deviation of the 

log-transformed values (SL) can be estimated from the standard deviation and the mean 

of the untransformed values (MA and SA) as follows: SL
2
 = LN[1+(SA/MA)

2
].  Thus, 

for a chlorophyll standard (assumed to be the “population mean”) of 15 ug/L, the 

corresponding standard deviation for the untransformed data would be estimated as 

follows: SA = 0.5029*15
1.1636

 = 11.75, from which the variance of the log-transformed 

values would be estimated as SL
2
 = LN[1+(11.75/15)

2
], or 0.478, yielding a standard 

deviation of 0.691.  The mean of the log-transformed values (ML) can be estimated from 

the arithmetic mean as follows: ML = LN(MA) – 0.5SL
2
.  For this example, ML = 

LN(15) – 0.5*0.478, or 2.47. 

 

The prediction interval also requires a sample size estimate and a value from the t-

distribution.  For the purpose of estimating the prediction interval of the standard, sample 

size is assumed to be very large; a sample size of 100 is chosen arbitrarily.  The 

justification is based on the origin of the standard deviation for the distribution of the 

standard, which was calculated from a regression line derived from a set of 20 lakes from 

which more than 1200 chlorophyll measurements were available.  The choice does not 



matter greatly insofar as the t-distribution, which matches the normal distribution for 

N= , yields values within a few percent of the normal distribution for N>30. 

 

The one-sided upper prediction limit (PL) for a standard of 15 ug/L, with =0.10 and 

n=100, is calculated as shown below (from Helsel and Hirsch 2002).  In the equation, the 

mean and standard deviation are for the log-transformed values. 

 

PL=exp[mean+t( ,n) (sy
2
+sy

2
/n)] 

PL=exp[2.47+1.29 (0.478+0.478/100)] 

PL=29 

If  were set to 0.05, the upper PL would 37.4. 

 

The prediction interval can be used to assess individual samples from any lake.  In this 

sense, it can be an early warning tool.  If the chlorophyll concentration in one sample is 

greater than 29 ug/L, that sample has only a 10% chance of belonging to a population 

with a mean of 15 ug/L.  Put another way, it is a strong indication that the lake would not 

attain a chlorophyll standard of 15 ug/L. 

 

Chlorophyll concentrations also can be assessed in terms of the observed seasonal mean.  

In this case, the observed mean is compared to the 90
th

 or 95
th
 percentile confidence 

interval for the distribution of the standard.  The H-statistic procedure is often used for 

locating the percentile as an untransformed value (Gilbert 1987), but concerns have been 

raised about this statistic (e.g., Singh et al. 1997).  The Division is still reviewing options 

for estimating confidence limits. 
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